Using HPCToolkit to Measure and Analyze the Performance of Parallel Applications

John Mellor-Crummey Rice University

ATPESC 2020 August 5, 2020

Download application examples to run, measure, and analyze: git clone https://github.com/HPCToolkit/hpctoolkit-tutorial-examples

Acknowledgments

Current funding

- DOE Exascale Computing Project (Subcontract 4000151982)
- NSF Software Infrastructure for Sustained Innovation (Collaborative Agreement 1450273)
- DOE Labs: ANL (Subcontract 9F-60073), Tri-labs (LLNL Subcontract B633244)
- Industry: AMD

Team

- Rice University
 - HPCToolkit PI: Prof. John Mellor-Crummey
 - Research staff: Laksono Adhianto, Mark Krentel, Xiaozhu Meng, Scott Warren
 - Contractor: Marty Itzkowitz
 - Students: Jonathon Anderson, Aaron Cherian, Dejan Grubisic, Yumeng Liu, Keren Zhou
 - Recent summer interns: Vladimir Indjic, Tijana Jovanovic, Aleksa Simovic
- University of Wisconsin Madison
 - Dyninst PI: Prof. Barton Miller

Performance Analysis Challenges on Modern Supercomputers

Myriad performance concerns

- Computation performance on CPU and GPU
- Data movement costs within and between memory spaces
- Internode communication
- I/O

Many ways to hurt performance

- insufficient parallelism, load imbalance, serialization, replicated work, parallel overhead ...

Hardware and execution model complexity

- Multiple compute engines with vastly different characteristics, capabilities, and concerns
- Multiple memory spaces with different performance characteristics
 - CPU and GPU have different complex memory hierarchies
- Often, a large gap between programming model and implementation
 - e.g., OpenMP, template-based programming models
- Asynchronous execution

Outline

- Overview of Rice's HPCToolkit
- Understanding the performance of parallel programs using HPCToolkit's GUIs
 - code centric views
 - time centric views
- Monitoring GPU-accelerated applications
- Work in progress

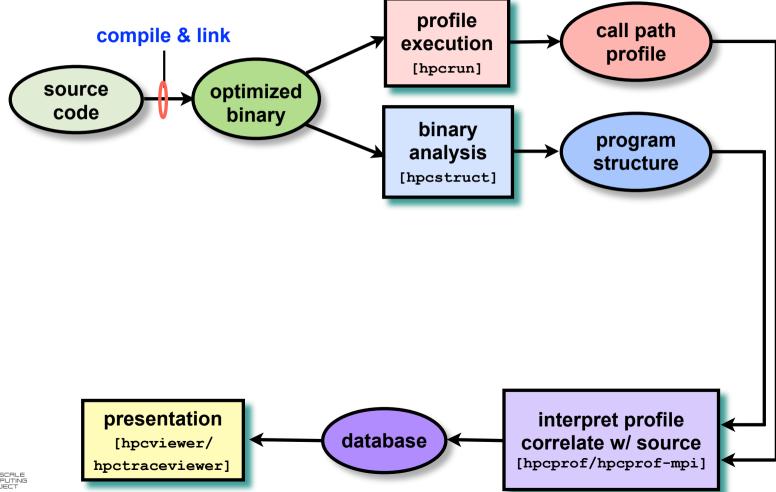
Rice University's HPCToolkit Performance Tools

• Employs binary-level measurement and analysis

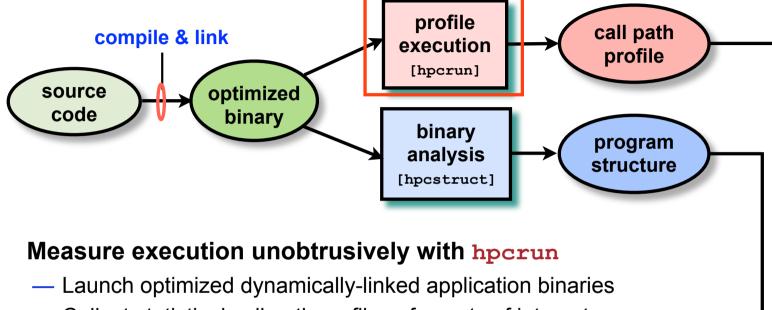
- Observes executions of fully optimized, dynamically-linked applications
- Supports multi-lingual codes with external binary-only libraries

Collects sampling-based measurements of CPU

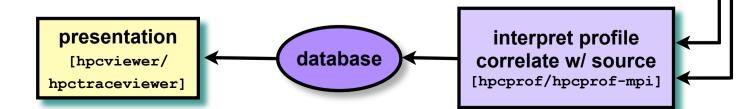
- Controllable overhead
- Minimize systematic error and avoid blind spots
- Enable data collection for large-scale parallelism

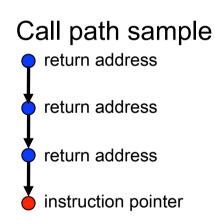

Measures GPU performance using APIs provided by vendors

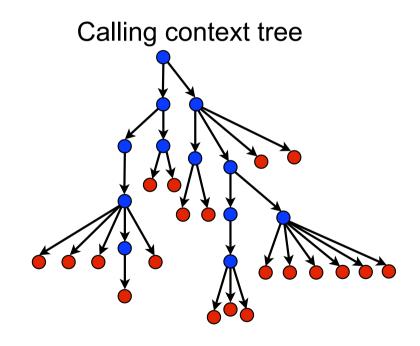
- Callbacks to monitor launch of GPU operations
- Activity API to monitor and present information about asynchronous operations on GPU devices
- PC sampling for fine-grain measurement


Associates metrics with both static and dynamic context

- Loop nests, procedures, inlined code, calling context on both CPU and GPU
- Specify and compute derived CPU and GPU performance metrics of your choosing
 - Diagnosis often requires more than one species of metric
- Supports top-down performance analysis
 - Identify costs of interest and drill down to causes: up and down call chains, over time

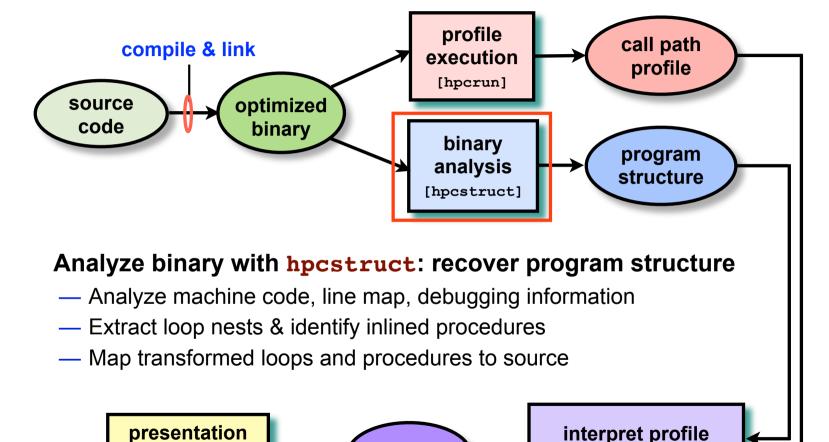



- Collect statistical call path profiles of events of interest
- Where necessary, intercept interfaces for control and measurement



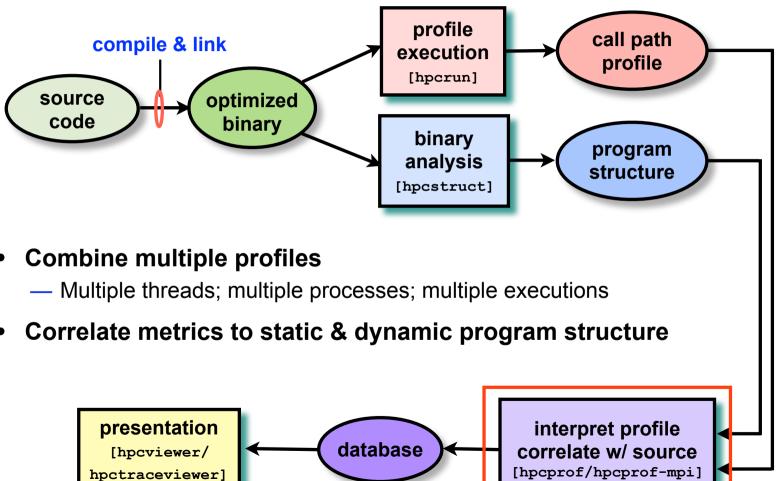
Call Path Profiling

- Measure and attribute costs in context
 - Sample timer or hardware counter overflows
 - Gather CPU calling context using stack unwinding

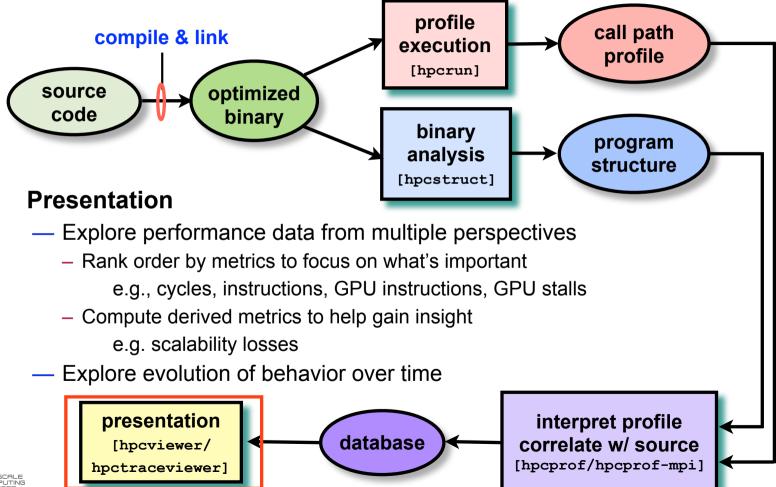


[hpcviewer/

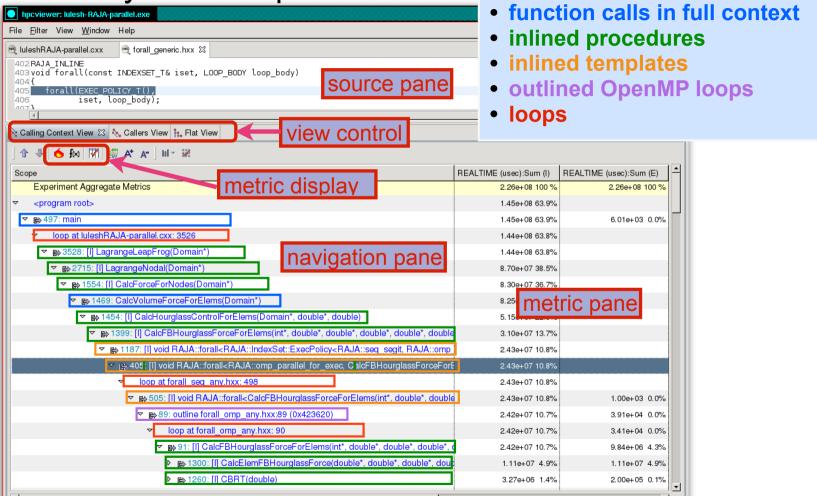
hpctraceviewer]



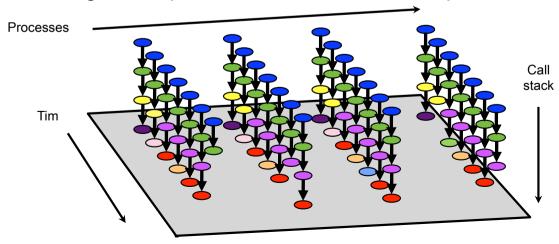
database


correlate w/ source

[hpcprof/hpcprof-mpi]



Code-centric Analysis with hpcviewer

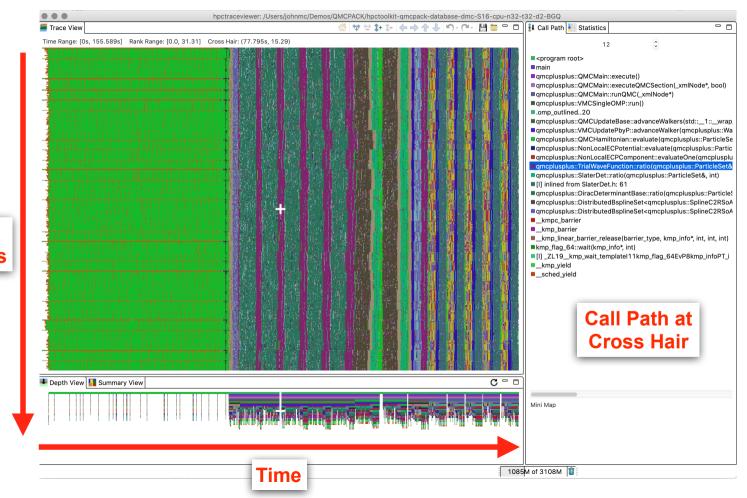

Understanding Temporal Behavior

Profiling compresses out the temporal dimension

- Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

What can we do? Trace call path samples

- N times per second, take a call path sample of each thread
- Organize the samples for each thread along a time line
- View how the execution evolves left to right
- What do we view? assign each procedure a color; view a depth slice of an execution



Time-centric Analysis with hpctraceviewer

Experimental version of QMCPack on Blue Gene Q

- 32 ranks
- 32 threads each

Ranks/ Threads

Demo: QMCPACK

QMCPACK in ECP

Goal

 Find, predict, and control materials and properties at the quantum level with an unprecedented and systematically improvable accuracy using quantum Monte Carlo methods

• Focus:

 transition metal oxide systems where the additional capability over existing methods is essential

Hope

- have a major impact on materials science
 - e.g., help to uncover the mechanisms behind high-temperature superconductivity

Measurement and Analysis of GPU-accelerated Applications

What HPCToolkit GUIs present for GPU-accelerated applications

- Profile views displaying call paths that integrate CPU and GPU call paths
- Trace views that attribute CPU threads and GPU streams to full heterogeneous call paths

What HPCToolkit collects

Heterogeneous call path profiles and call path traces

How HPCToolkit collects information

- CPU
 - Sampling-based measurement of application thread activity in user space and in the kernel
 - Measurement of blocking time using Linux perf_events context switch notifications
- GPU
 - Coarse-grain measurement of GPU operations (memory copies, kernel launches, ...)
 - Fine-grain measurement of GPU kernels using PC Sampling (NVIDIA only)

GPU Monitoring Capabilities of HPCToolkit

Measurement Capability	NVIDIA	AMD	Intel
kernel launches, explicit memory copies, synchronization	callbacks + activity API	callbacks + Activity API	callbacks
instruction-level measurement and analysis	PC sampling, analysis of GPU binaries	no	GTPin
kernel characteristics	Activity API	(available statically)	(unknown)

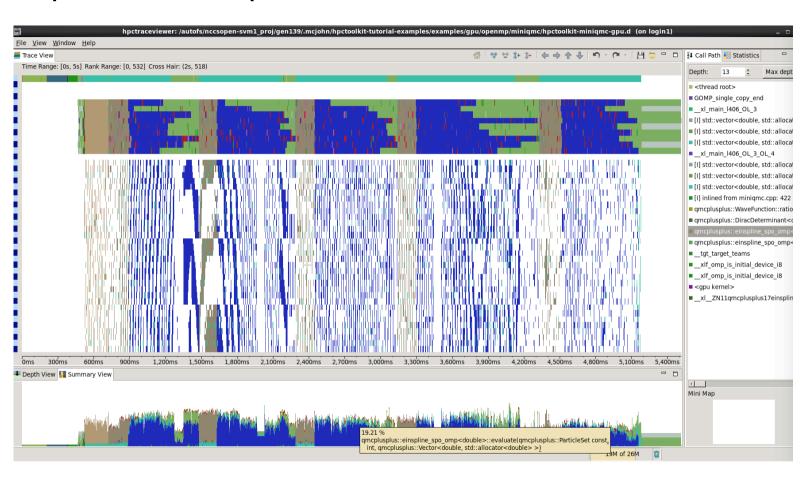
Significant support in master branch

Prototype support in master branch

Prototype support in a development branch

Miniqmc GPU OpenMP Example: A Trace View

Compute Node


- 2 Power9
- 6xNVIDIA GPU

Compiled with IBM XL

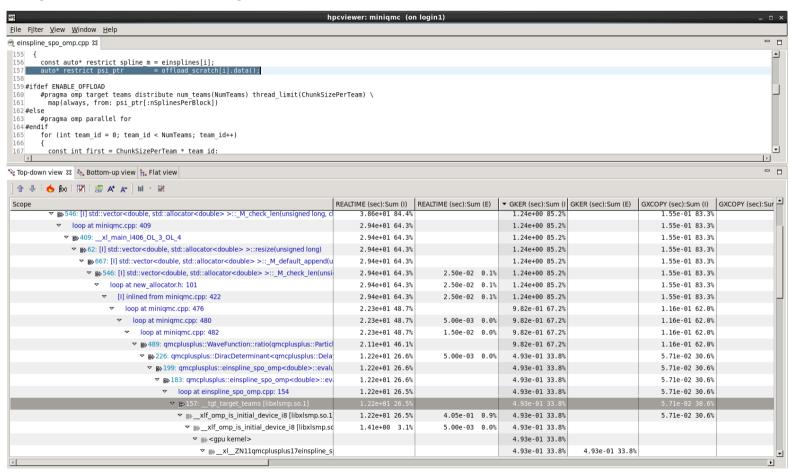
- 1 rank
- 10 OMP threads
- 32 GPU streams

Trace view shows

- master thread
- OMP worker threads.
- GPU streams
- all activities attributed to full calling context

hpctoolkit-tutorial-examples/examples/gpu/openmp/miniqmc

Miniqmc GPU OpenMP Example: A Profile View


Compute Node

- 2 Power9
- 6xNVIDIA GPU

Compiled with IBM XL

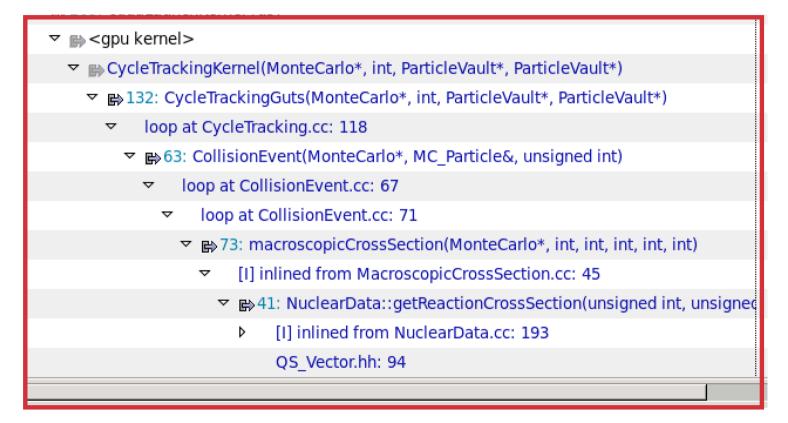
- 1 rank
- 10 OMP threads
- 32 GPU streams

Profile view shows OMP target offload in full calling context

Quicksilver GPU CUDA Example: Detailed Profile View

Compute Node

- 2 Power9
- 6xNVIDIA GPU
- Optimized (-O2) compilation with nvcc
- 1 GPU stream
- Detailed measurement and attribution using PC sampling
- Reconstruct approximate call graph on GPU from flat PC samples
- Attribute information to heterogeneous calling context including
 - CPU calling context
 - GPU kernel
 - GPU calling context
 - GPU loops
 - GPU statements
- Metrics
 - instructions executed
 - instruction stalls and reasons
 - GPU utilization



Quicksilver GPU CUDA Example: Detailed Profile View

- Optimized (-O2) compilation with nvcc
- 1 GPU stream
- Detailed measurement and attribution using PC sampling
- Reconstruct approximate call graph on GPU from flat PC samples
- Attribute information to heterogeneous calling context including
 - CPU calling context
 - GPU kernel
 - GPU calling context
 - GPU loops
 - GPU statements
- Metrics
 - instructions executed
 - instruction stalls and reasons
 - GPU utilization

Detailed Attribution on GPUs

Work in Progress

GPU Enhancements

- Intel GPUs
 - Measurement support for Intel GPUs using OpenCL and Level 0
 - Fine-grain measurement using GTPin
 - Fine-grain attribution using binary analysis
- AMD GPUs
 - Binary analysis and instrumentation for fine-grain measurement and attribution

Scalability

- Add multithreading to hpcprof-mpi to accelerate analysis
- Overhaul representations used for recording measurement and analysis results to use sparse forms
- Overhaul file management to use few large files instead of two per thread

User interface

- · Integrated hpcviewer and hpctraceviewer
- Modernized implementation using latest Eclipse and Java

Bonus Content

Download Hands-on Tutorial Examples

- git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-examples
- Configured for use on
 - ANL's Theta
 - AMG2006
 - MPI + OpenMP
 - ORNL's Ascent
 - miniqmc
 - CPU OpenMP: GCC, XL
 - GPU OpenMP Target: XL
 - quicksilver
 - GPU CUDA: nvcc

Installing HPCToolkit: Configuration and Installation on Ascent

Use spack for installation

- git clone https://github.com/spack/spack
- module load gcc
 - ensure that a GCC version >= 5 is on your path.
 typically, we use GCC 7 to compile hpctoolkit
- export SPACK_ROOT=`pwd`/spack
- export PATH=\${SPACK_ROOT}/bin:\$PATH
- source \${SPACK_ROOT}/share/spack/setup-env.sh
- spack compiler find
- configure ~/.spack/packages.yaml for custom build
- spack install hpctoolkit
- see http://hpctoolkit.org/software-instructions.html
 for additional details and troubleshooting

```
[mcjohn@login1.ascent ~]$ more ~/.spack/packages.vaml
packages:
 perl:
  paths:
    perl@5.16.3: /usr
  buildable: False
  python:
  paths:
    pvthon@2.7.5: /usr
   buildable: False
  cmake:
   modules:
    cmake@3.17.3: cmake/3.17.3
  buildable: False
  openmpi:
   modules:
    openmpi@3.0.1:
                   spectrum-mpi/10.3.1.2-20200121
  buildable: False
  cuda:
   modules:
    cuda@11.0.2: cuda/11.0.2
  buildable: False
  dvninst:
   version: [develop]
 hpctoolkit:
   version: [master]
   variants: +mpi +cuda
```


HPCToolkit's Graphical User Interfaces

- Overview
- Tips for using them effectively

hpctraceviewer Panes and their Purposes

Trace View pane

- Displays a sequence of samples for each trace line rendered
- Title bar shows time interval rendered, rank interval rendered, cross hair location

Call Path pane

Show the call path of the selected thread at the cross hair

Depth View pane

- Show the call stack over time for the thread marked by the cross hair
- Unusual changes or clustering of deep call stacks can indicate behaviors of potential interest

Summary View pane

At each point in time, a histogram of colors above in a vertical column of the Trace View

Rendering Traces with hpctraceviewer

- hpctraceviewer renders traces by sampling the [rank x time] rectangle in the viewport
 - Don't try to summarize activity in a time interval represented by a pixel
 - Just pick the last activity before the sample point in time
- Cost of rendering a large execution is [H x T lg N] for traces of length N
 - The number of trace lines that can be rendered is limited by the number of vertical pixels H
 - Binary search along rendered trace lines to extract values for pixels
- It can be used to analyze large data: thousands of ranks and threads
 - Data is kept on disk, memory mapped, and read only as needed

Understanding How hpctraceviewer Paints Traces

CPU trace lines

- Given: (procedure f, t) (procedure g, t') (procedure h, t")
 - Default painting algorithm
 - paint color "f" in [t,t"); paint color "g" in [t', t")
 - Midpoint painting algorithm
 - paint color "f" in [t, (t+t')/2); paint color "g" in [(t+t')/2, (t'+t'')/2)

GPU trace lines

- Given GPU operations "f" in interval [t, t') and and "g" in interval [t", t"")
 - paint color "f" in [t, t'); paint color white in [t', t"); paint color "g" in [t", t"")

Analysis Strategies with Time-centric hpctraceviewer

- Use top-down analysis to understand the broad characteristics of the parallel execution
- Click on a point of interest in the Trace View to see the call path there
- Zoom in on individual phases of the execution or more generally subsets of [rank, time]
 - The mini-map tracks what subset of the execution you are viewing
- Home, undo, redo buttons allow you to move back and forth in a sequence of zooms
- Drill down the call path to see what is going on at the call path leaves
 - Hold your mouse over the call path depth selector. a tool tip will tell you the maximum depth
 - Type the maximum call stack depth number into the depth selector
- Use the summary view to see a histogram about what fraction of threads or ranks is doing at each time
- The summary view can facilitate analysis of how behavior changes over time
- The statistics view can show you the fraction of [rank x time] spent in each procedure at the selected depth level

Understanding the Navigation Pane in Code-centric hpcviewer

- program root>: the top of the call chain for the executable
- <thread root>: the top of the call chain for any pthreads
- <partial call paths>
 - The presence of partial call paths indicates that hpcrun was unable to fully unwind the call stack
 - Even if a large fraction of call paths are "partial" unwinds, bottom-up and flat views can be very informative
- Sometimes functions appear in the navigation pane and appear to be a root
 - This means that hpcrun believed that the unwind was complete and successful
 - Ideally, this would have been placed under <partial call paths>

Understanding the Navigation Pane in Code-centric hpcviewer

- Treat inlined functions as if regular functions
- Calling an inlined function
 - ■ Boost::unique_lock<Dyninst::dyn_mutex>::unique_lock(Dyninst::dyn_mutex&)
 - [I] is a tag used to indicate that the called function is inlined callsite is a hyperlink to the file and source line where the inlined function is called callee is a hyperlink to the definition of the inlined function
- If no source file is available, the caller line number and the callee will be in black

Analysis Strategies with Code-centric hpcviewer

- Use top-down analysis to understand the broad characteristics of the execution
 - Are there specific unique subtrees in the computation that use or waste a lot of resources?
 - Select a costly node and drill down the "hottest path" rooted there with the flame button
 - One can select a node other than the root and use the flame button to look in its subtree
 - Hold your mouse over a long name in the navigation pane to see the full name in a tool tip
- Use bottom-up analysis to identify costly procedures and their callers
 - Pick a metric of interest, e.g. cycles
 - Sort by cycles in descending order
 - Pick the top routine and use the flame button to look up the call stack to its callers
 - Repeat for a few routines of particular interest, e.g. network wait, lock wait, memory alloc, ...
- Use the flat view to explore the full costs associated with code at various granularities
 - Sort by a cost of interest; use the flame button to explore an interesting load module
 - Use the "flatten" button to melt away load modules, files, and functions to identify the most costly loop

Preparing a GPU-accelerated Program for HPCToolkit

- HPCToolkit doesn't need any modifications to your Makefiles
 - it can measure fully-optimized code without special preparation
- To get the most from your measurement and analysis
 - Compile your program with line numbers
 - CPU (all compilers)
 - add "-g" to your compiler optimization flags
 - NVIDIA GPUs
 - compiling with nvcc
 - add "-lineinfo" to your optimization flags for GPU line numbers
 - · adding -G provides full information about inlining and GPU code structure but disables optimization
 - compiling with xlc
 - line information is unavailable for optimized code
 - AMD GPUs, no special preparation needed
 - current AMD GPUs and ROCM software stack lack capabilities for fine-grain measurement and attribution
 - Intel GPUs (prototypes not integrated into HPCToolkit master)
 - monitors kernel launches, memory copies, synchronization
 - partial support for fine-grain monitoring with GTPin instrumentation; no source-level attribution yet

Using HPCToolkit to Measure an Execution

- Sequential program
 - hpcrun [measurement options] program [program args]
- Parallel program
 - mpirun -n <nodes> [mpi options] hpcrun [measurement options] \
 program [program args]
 - Similar launches with job managers
 - LSF: jsrun
 - SLURM: srun
 - Cray: aprun

CPU Time-based Sample Sources - Linux thread-centric timers

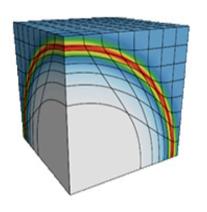
CPUTIME (DEFAULT if no sample source is specified)

- CPU time used by the thread in microseconds
- Does not include time blocked in the kernel
 - disadvantage: completely overlooks time a thread is blocked
 - advantage: a blocked thread is never unblocked by sampling

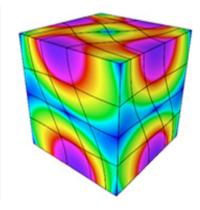
REALTIME

- Real time used by the thread in microseconds
- Includes time blocked in the kernel
 - · advantage: shows where a thread spends its time, even when blocked
 - disadvantages
 - -activates a blocked thread to take a sample
 - -a blocked thread appears active even when blocked

Note: Only use one Linux timer to measure an execution


CPU Sample Sources - Linux perf_event monitoring subsystem

- Kernel subsystem for performance monitoring
- Access and manipulate
 - Hardware counters: cycles, instructions, ...
 - Software counters: context switches, page faults, ...
- Available in Linux kernels 2.6.31+
- Characteristics
 - Monitors activity in user space and in the kernel
 - Can see costs in GPU drivers

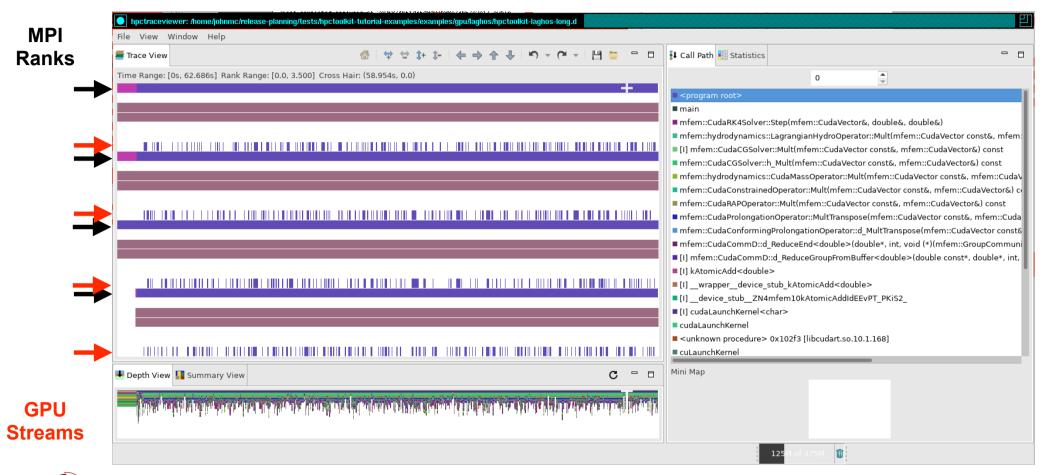


Case Study: Measurement and Analysis of GPU-accelerated Laghos

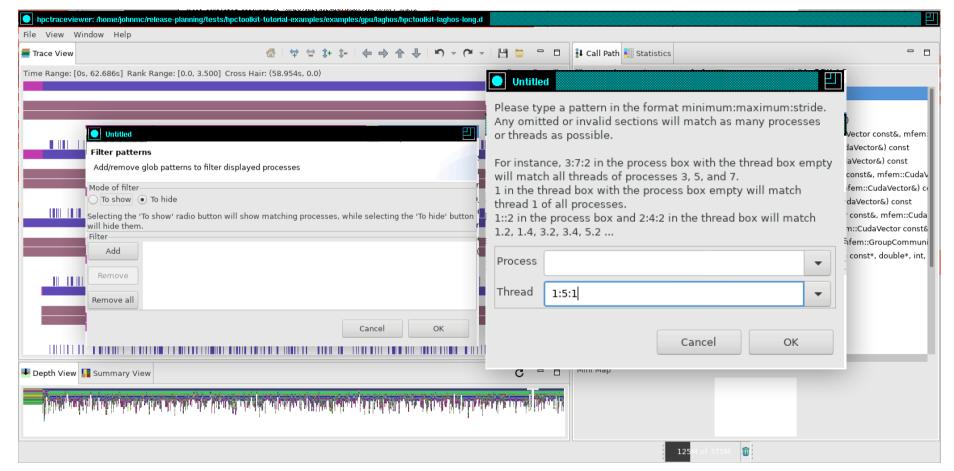
Laghos (LAGrangian High-Order Solver) is a LLNL ASC co-design mini-app that was developed as part of the CEED software suite, a collection of software benchmarks, miniapps, libraries and APIs for efficient exascale discretization based on high-order finite element and spectral element methods.

Applying the GPU Operation Measurement Workflow to Laghos

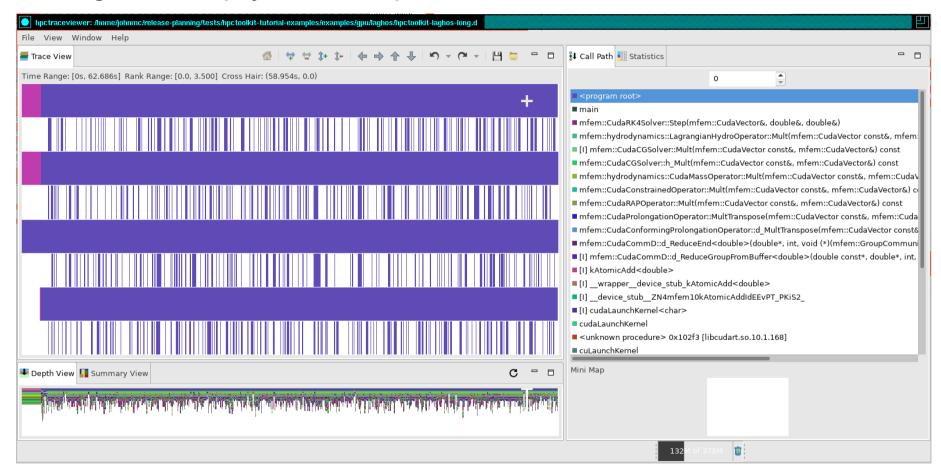
```
# measure an execution of laghos
time mpirun -np 4 hpcrun -o $OUT -e cycles -e qpu=nvidia -t \
  ${LAGHOS DIR}/laghos -p 0 -m ${LAGHOS DIR}/../data/square01 quad.mesh \
  -rs 3 -tf 0.75 -pa
# compute program structure information for the laghos binary
hpcstruct -j 16 laghos
 compute program structure information for the laghos cubins
hpcstruct -j 16 $OUT
# combine the measurements with the program structure information
mpirun -n 4 hpcprof-mpi -S laghos.hpcstruct $OUT
```



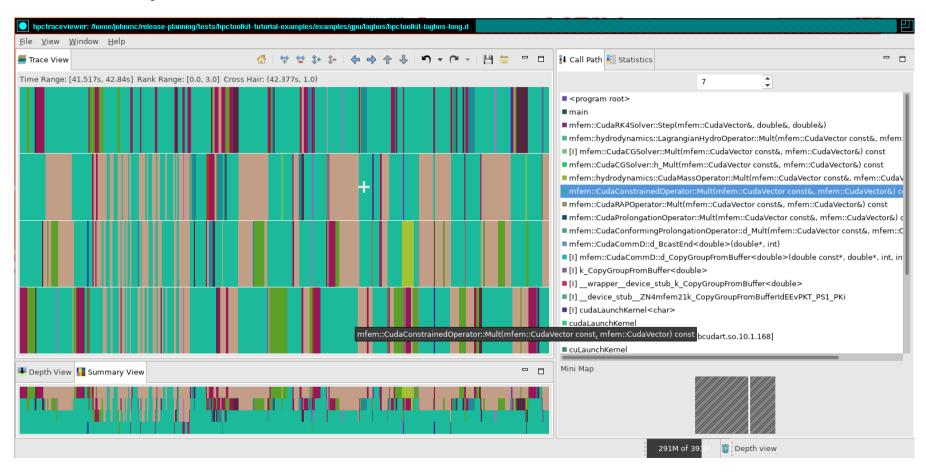
Computing Program Structure Information for NVIDIA cubins


- When a GPU-accelerated application runs, HPCToolkit collects unique GPU binaries
 - Currently, NVIDIA does not provide an API that provides a URI for cubins it launches
 - CUPTI presents cubins to tools as an interval in the heap (starting address, length)
 - HPCToolkit computes an MD5 hash for each cubin and saves one copy
 - stores save cubins in hpcrun's measurement directory: <measurement directory>/cubins
- Analyze the cubins collected during an execution
 - hpcstruct -j 16 <measurement directory>
 - lightweight analysis based only on cubin symbols and line map
 - hpcstruct -j 16 -gpucfg yes <measurement directory>
 - heavyweight analysis based only on cubin symbols, line map, control flow graph
 - uses nvdisasm to compute control flow graph
 - fine-grain analysis only needed to interpret PC sampling experiments
 - hpcstruct analyzes cubins in parallel using thread count specified with -j

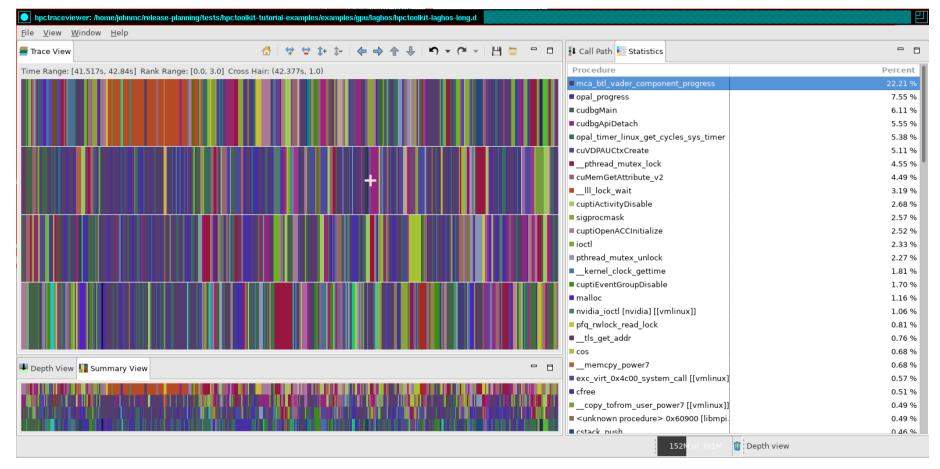
Initial hpctraceviewer view of Laghos (long) Execution



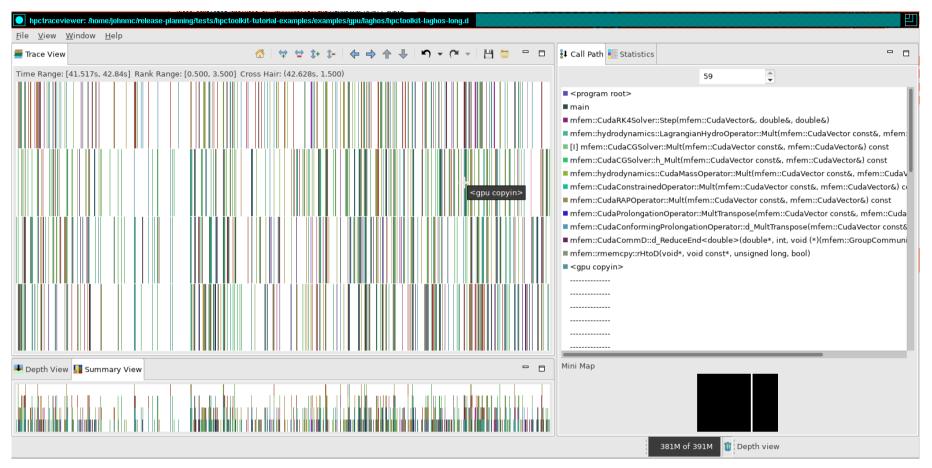
Hiding the Empty MPI Helper Threads



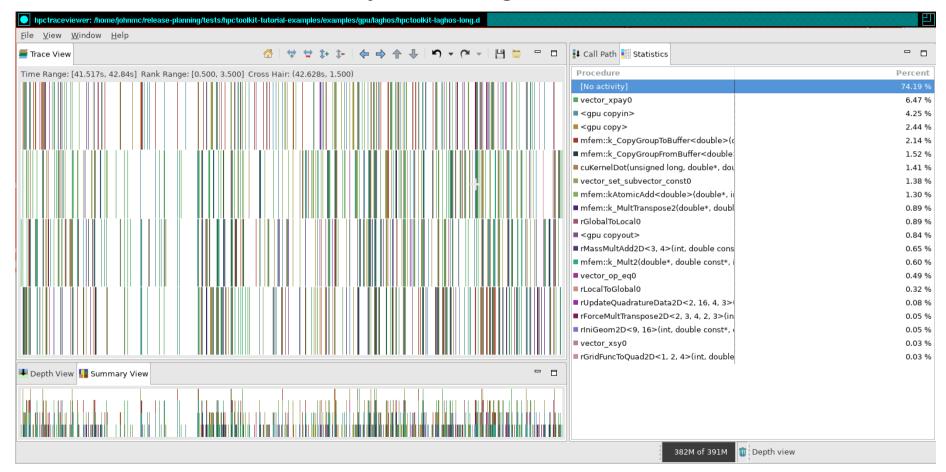
After Hiding the Empty MPI Helper Threads



A Detail of Only the MPI Threads

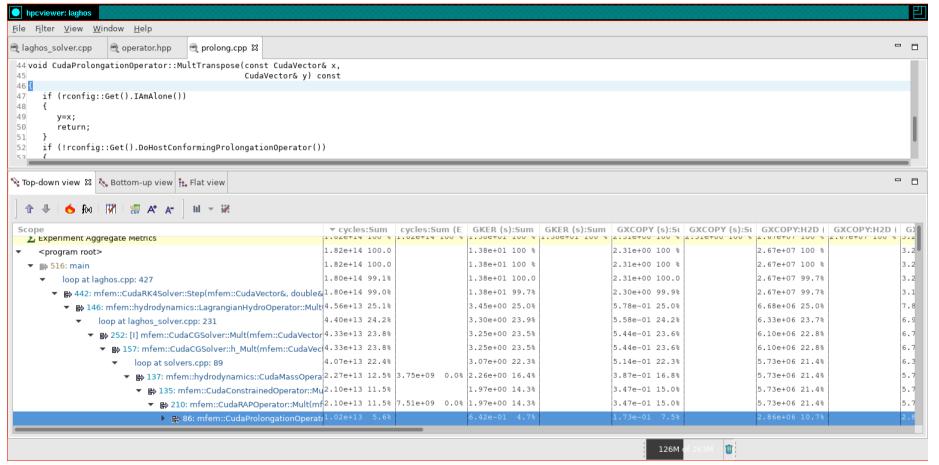


Only the MPI Threads - Analysis using the Statistics Panel



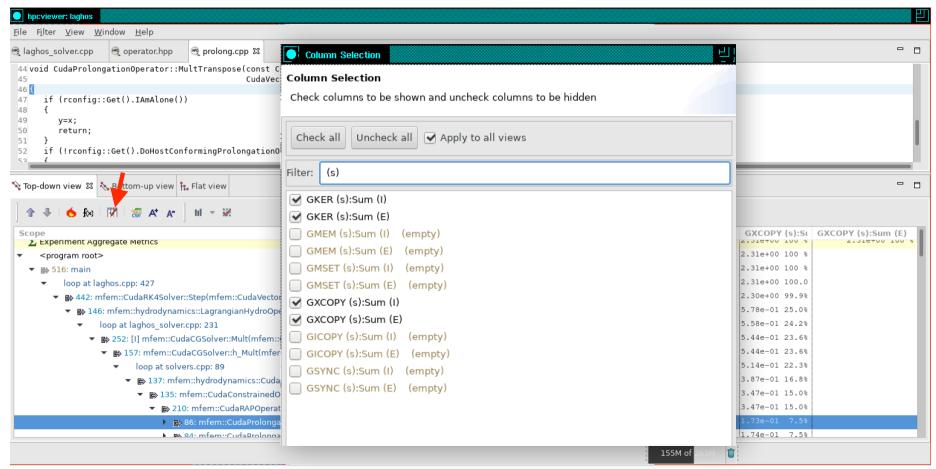
Only the GPU Threads - Inspecting the Callpath for a Kernel

Only the GPU Threads - Analysis Using the Statistics Panel

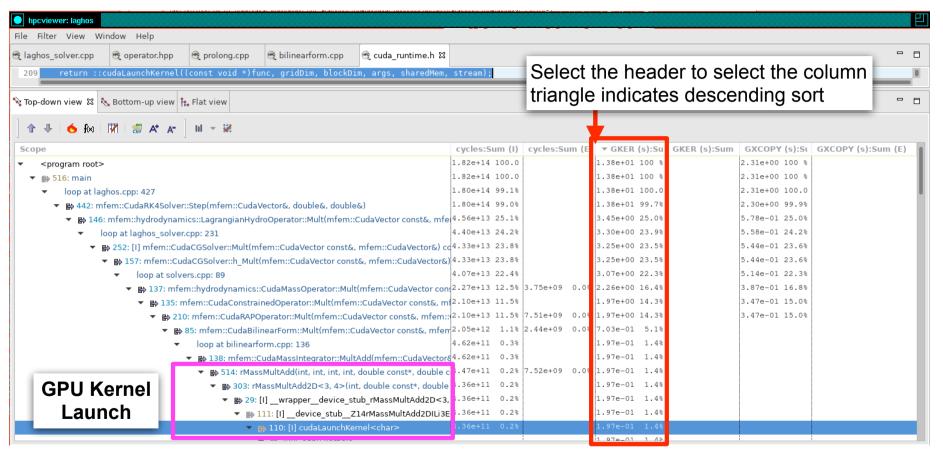


Some Cautions When Analyzing GPU Traces

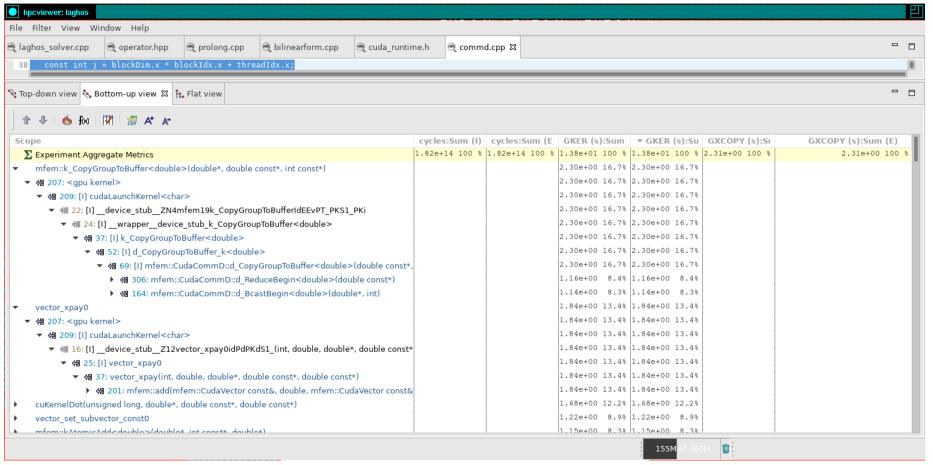
- There are overheads introduced by NVIDIA's monitoring API that we can't avoid
- When analyzing traces from your program and compare GPU activity to [no activity]
 - Time your program without any tools
 - Time your program when tracing with HPCToolkit or nvprof
 - Re-weight <no activity> by the ratio of unmonitored time to monitored time
- While this is a concern for traces, this should be less a concern for profiles
 - On the CPU, HPCToolkit compensates for monitoring overhead in profiles by not measuring it



Using hpcviewer to See the Source-centric View

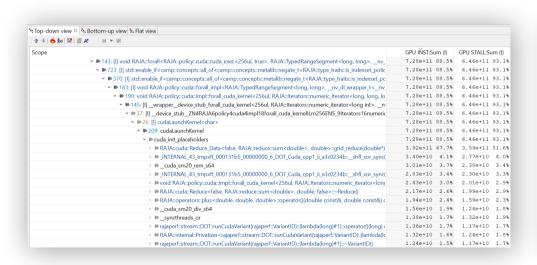


Selecting Metrics to Display Using the Column Selector

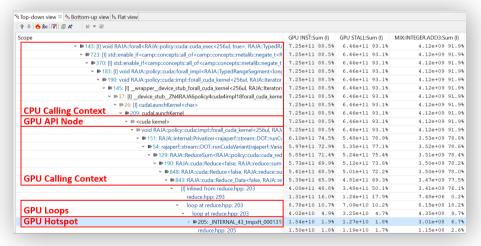


Using GPU Kernel Time to Guide Top-down Exploration

Using GPU Kernel Time to Guide Bottom-up Exploration

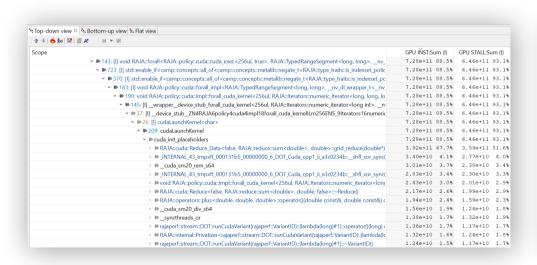


HPCToolkit's GPU Instruction Sampling Metrics (NVIDIA Only)

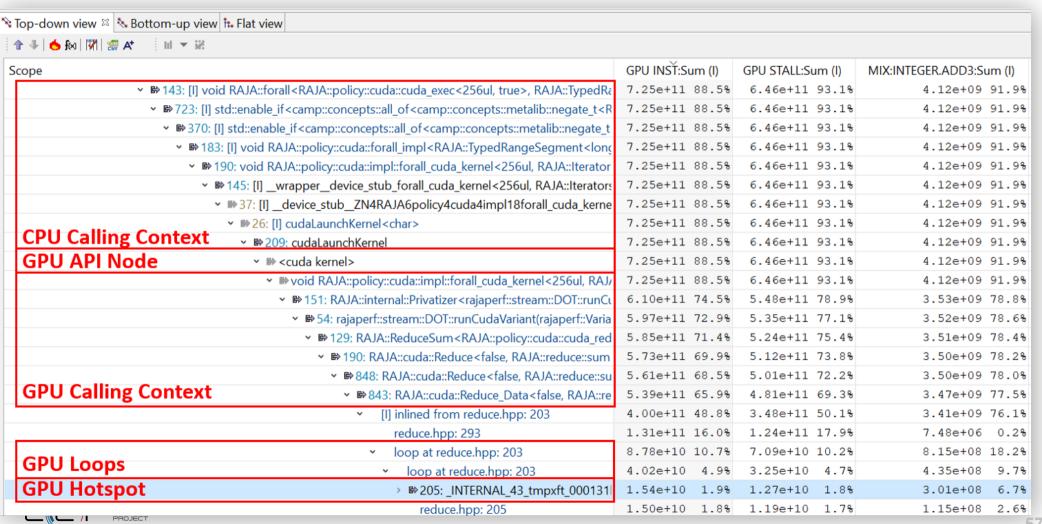

Metric	Definition
GINST:STL_ANY	GPU instruction stalls: any (sum of all STALL metrics other than NONE)
GINST:STL_NONE	GPU instruction stalls: no stall
GINST:STL_IFET	GPU instruction stalls: await availability of next instruction (fetch or branch delay)
GINST:STL_IDEP	GPU instruction stalls: await satisfaction of instruction input dependence
GINST:STL_GMEM	GPU instruction stalls: await completion of global memory access
GINST:STL_TMEM	GPU instruction stalls: texture memory request queue full
GINST:STL_SYNC	GPU instruction stalls: await completion of thread or memory synchronization
GINST:STL_CMEM	GPU instruction stalls: await completion of constant or immediate memory access
GINST:STL_PIPE	GPU instruction stalls: await completion of required compute resources
GINST:STL_MTHR	GPU instruction stalls: global memory request queue full
GINST:STL_NSEL	GPU instruction stalls: not selected for issue but ready
GINST:STL_OTHR	GPU instruction stalls: other
GINST:STL_SLP	GPU instruction stalls: sleep

- GPU code from C++ template-based programming models is complex
- NVIDIA GPUs collect flat PC samples
- Flat profiles for instantiations of complex C++ templates are inscrutable

- HPCToolkit reconstructs approximate GPU calling contexts
 - Reconstruct call graph from machine code
 - Infer calls at call sites
 - PC samples of call instructions indicate calls
 - Use call counts to apportion costs to call sites
 - PC samples in a routine



↑ Top-down view 🛮 🔊 Bottom-up view 🏗 Flat view		
Scope	GPU IŇST:Sum (I)	GPU STALL:Sum (I)
▼ ₱ 143: [I] void RAJA::forall <raja::policy::cuda::cuda_exec<256ul, true="">, RAJA::TypedRangeSegment<long, long="">,nv_</long,></raja::policy::cuda::cuda_exec<256ul,>	7.28e+11 88.5%	6.46e+11 93.1%
➤ ▶723: [I] std::enable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic< td=""><td>7.28e+11 88.5%</td><td>6.46e+11 93.1%</td></camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic<>	7.28e+11 88.5%	6.46e+11 93.1%
→ → 370: [I] std::enable_if < camp::concepts::all_of < camp::concepts::metalib::negate_t < RAJA::type_traits::is_indexset_pc	7.28e+11 88.5%	6.46e+11 93.1%
➤ № 183: [I] void RAJA::policy::cuda::forall_impl <raja::typedrangesegment<long, long="">,nv_dl_wrapper_t<nv_< td=""><td>7.28e+11 88.5%</td><td>6.46e+11 93.1%</td></nv_<></raja::typedrangesegment<long,>	7.28e+11 88.5%	6.46e+11 93.1%
➤ ▶ 190: void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long, lo<="" long,="" td=""><td>7.28e+11 88.5%</td><td>6.46e+11 93.1%</td></long,>	7.28e+11 88.5%	6.46e+11 93.1%
→ № 145: [I] _wrapperdevice_stub_forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long int="">, _n</long>	7.28e+11 88.5%	6.46e+11 93.1%
→ 37: [I]device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kernellLm256ENS_9Iterators16numeric	7.28e+11 88.5%	6.46e+11 93.1%
→ → 26: [I] cudaLaunchKernel < char >	7.28e+11 88.5%	6.46e+11 93.1%
	7.28e+11 88.5%	6.46e+11 93.1%
✓	7.28e+11 88.5%	6.46e+11 93.1%
> MRAJA::cuda::Reduce_Data <false, raja::reduce::sum<double="">, double>::grid_reduce(double*)</false,>	3.92e+11 47.7%	3.59e+11 51.6%
> INTERNAL_43_tmpxft_000131b5_00000000_6_DOT_Cuda_cpp1_ii_a3c0234b::shfl_xor_sync(3.40e+10 4.1%	2.77e+10 4.0%
> > _cuda_sm20_rem_s64	3.01e+10 3.7%	2.38e+10 3.4%
> INTERNAL_43_tmpxft_000131b5_00000000_6_DOT_Cuda_cpp1_ii_a3c0234b::shfl_xor_sync(2.83e+10 3.4%	2.30e+10 3.3%
> ▶ void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long< td=""><td>2.43e+10 3.0%</td><td>2.01e+10 2.9%</td></long<>	2.43e+10 3.0%	2.01e+10 2.9%
>	2.17e+10 2.6%	1.99e+10 2.9%
> ▶ RAJA::operators::plus <double, double="" double,="">::operator()(double const&, double const&) c</double,>	1.94e+10 2.4%	1.59e+10 2.3%
> > _cuda_sm20_div_s64	1.56e+10 1.9%	1.24e+10 1.8%
> > _syncthreads_or	1.38e+10 1.7%	1.32e+10 1.9%
> ▶ rajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)::{lambda(long)#1}::operator()(long) ←	1.36e+10 1.7%	1.17e+10 1.7%
> MRAJA::internal::Privatizer <rajaperf::stream::dot::runcudavariant(rajaperf::variantid)::{lambda(lc< td=""><td>1.32e+10 1.6%</td><td>1.24e+10 1.8%</td></rajaperf::stream::dot::runcudavariant(rajaperf::variantid)::{lambda(lc<>	1.32e+10 1.6%	1.24e+10 1.8%
> ▶ rajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)::{lambda(long)#1}::~VariantID()	1.24e+10 1.5%	1.17e+10 1.7%


- GPU code from C++ template-based programming models is complex
- NVIDIA GPUs collect flat PC samples
- Flat profiles for instantiations of complex C++ templates are inscrutable

- HPCToolkit reconstructs approximate GPU calling contexts
 - Reconstruct call graph from machine code
 - Infer calls at call sites
 - PC samples of call instructions indicate calls
 - Use call counts to apportion costs to call sites
 - PC samples in a routine

Accuracy of GPU Calling Context Recovery: Case Studies

- Compute approximate call counts as the basis for partitioning the cost of function invocations across call sites
 - Use call samples at call sites, data flow analysis to propagate call approximation upward
 - if samples were collected in some function f, if no calls to f were sampled, equally attribute f
 to each of its call sites
 - How accurate is our approximation?
- Evaluation methodology
 - Use NVIDIA's nvbit to
 - instrument call and return for GPU functions
 - instrument basic blocks to collect block histogram

Accuracy of GPU Calling Context Recovery: Case Studies

Error partitioning a function's cost among call sites

$$Error = \sqrt{\sum_{i=0}^{n-1} \frac{\left(\sqrt{\sum_{j=0}^{i_c-1} \frac{(f_N(i,j) - f_H(i,j))^2}{i_c}}\right)^2}{n}}$$

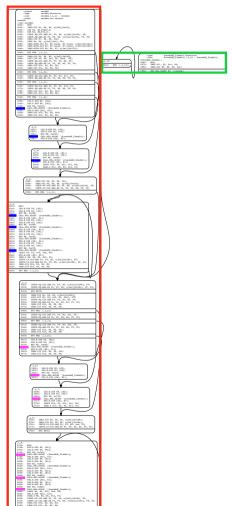
geometric mean across GPU functions of (root mean square error of call attribution across all of a function's call sites comparing our approximation vs. attribution using exact nvbit measurements)

Experimental study

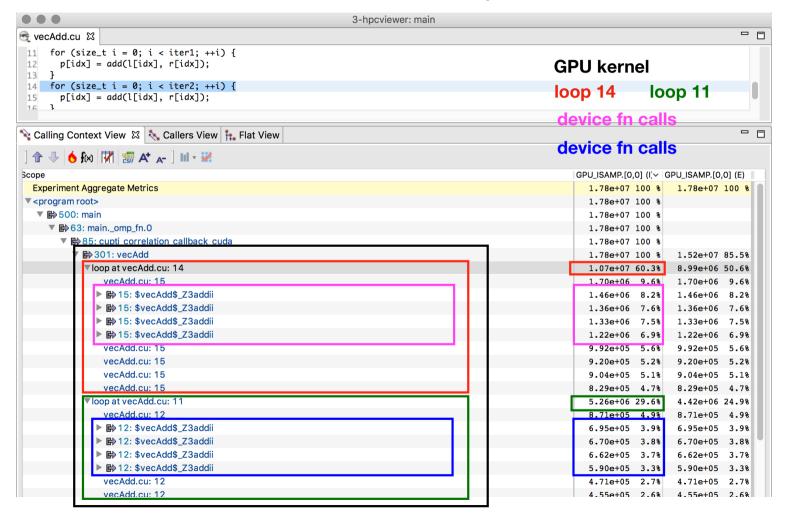
Test Case	Unique Call Paths	Error
Basic_INIT_VIEW1D_OFFSET	9	0
Basic_REDUCE3_INT	113	0.03
Stream_DOT	60	0.006
Stream_TRIAD	5	0
Apps_PRESSURE	6	0
Apps_FIR	5	0
Apps_DEL_DOT_VEC_2D	3	0
Apps VOL3D	4	0

Costs of GPU Functions Distributed Among Their Call Sites

- Use call site frequency approximation
- Use Gprof assumption: all calls to a function incur exactly the same cost
 - known to not be true in all cases, but a useful assumption nevertheless

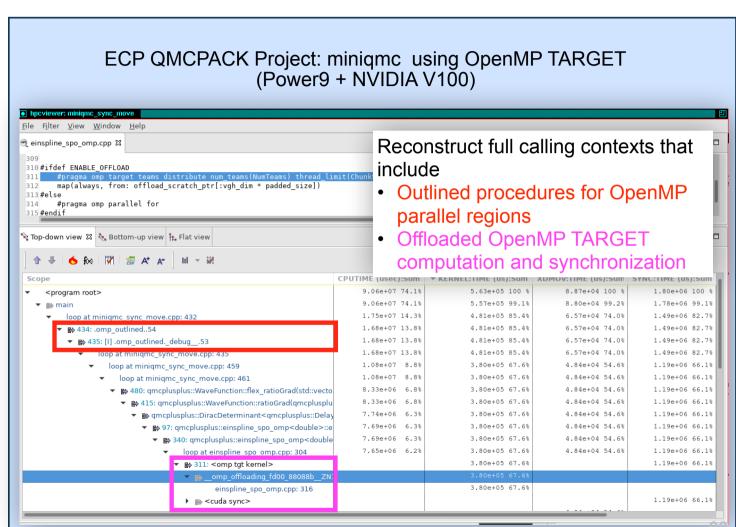

GPU call site attribution example

- Case study: call function GPU "vectorAdd"*
 - iter1 = N
 - iter2 = 2N

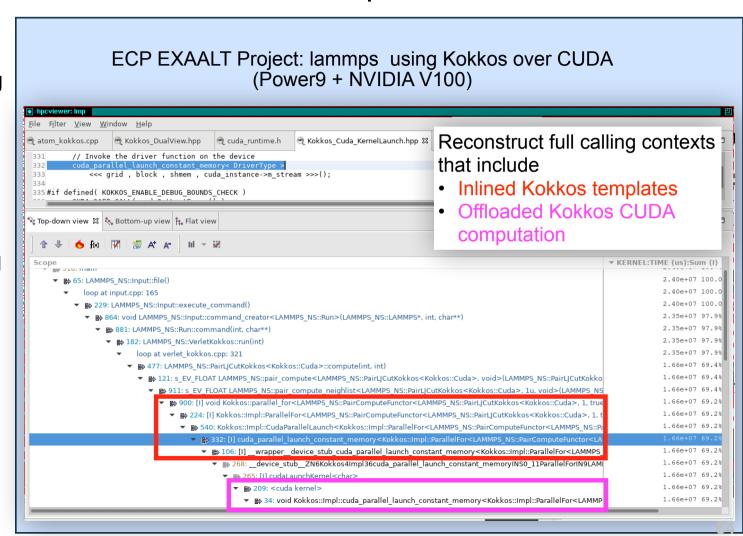

```
1 __device__
2 int __attribute__ ((noinline)) add(int a, int b) {
3    return a + b;
4 }
5
6
7  extern "C"
8 __global__
9  void vecAdd(int *l, int *r, int *p, size_t N, size_t iter1, size_t iter2) {
10    size_t idx = blockDim.x * blockIdx.x + threadIdx.x;
11    for (size_t i = 0; i < iter1; ++i) {
12       p[idx] = add(l[idx], r[idx]);
13    }
14    for (size_t i = 0; i < iter2; ++i) {
15       p[idx] = add(l[idx], r[idx]);
16    }
17 }</pre>
```

Note: the computation by the function is synthetic and is not a vector addition. The name came from code that was hacked to do perform an unrelated computation.

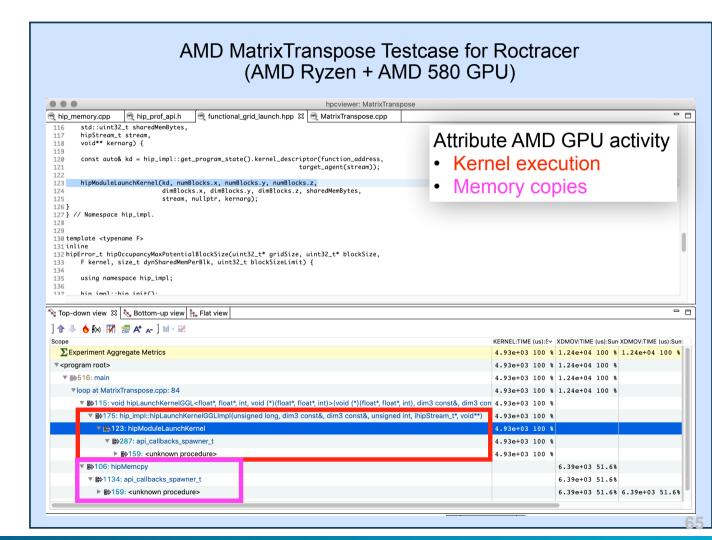
Profiling Result for GPU-accelerated Example



Support for OpenMP TARGET


- HPCToolkit implementation of OMPT OpenMP API
 - host monitoring
 - leverages callbacks for regions, threads, tasks
 - employs OMPT API for call stack introspection
 - GPU monitoring
 - leverages callbacks for device initialization, kernel launch, data operations
 - reconstruction of userlevel calling contexts
- Leverages implementation of OMPT in LLVM OpenMP and libomptarget

Support for RAJA and and Kokkos C++ Template-based Models


- RAJA and Kokkos provide portability layers atop C++ template-based programming abstractions
- HPCToolkit employs binary analysis to recover information about procedures, inlined functions and templates, and loops
 - Enables both developers and users to understand complex template instantiation present with these models

Prototype Integration with AMD's Roctracer GPU Monitoring Framework

- Use AMD Roctracer activity API to trace GPU activity
 - kernel launches
 - explicit memory copies
- Current prototype supports AMD's HIP programming model

HPCToolkit Challenges and Limitations

Fine-grain measurement and attribution of GPU performance

- PC sampling overhead on NIVIDIA GPUs is currently very high: a function of NVIDIA's CUPTI implementation
- No available hardware support for fine-grain measurement on Intel and AMD GPUs

GPU tracing in HPCToolkit

- Creates one tool thread per GPU stream when tracing
- OK for a small number of streams but many streams can be problematic

Cost of call path sampling

- Call path unwinding of GPU kernel invocations is costly (~2x execution dilation for Laghos)
- Best solution is to avoid some of it, e.g. sample GPU kernel invocations

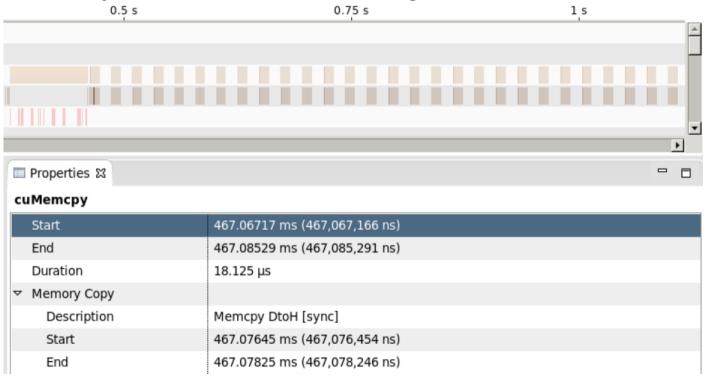
Currently, hpcprof and hpcprof-mpi compute dense vectors of metrics

- Designed for few CPU metrics, not O(100) GPU metrics: space and time problem for analysis

Analysis and Optimization Case Studies

Environments

- Summit
 - cuda/10.1.168
 - gcc/6.4.0
- Local
 - cuda/10.1.168
 - gcc/7.3.0


Case 1: Locating expensive GPU APIs with profile view

- Laghos
 - 1 MPI process
 - 1 GPU stream per process

nvprof: missing CPU calling context

Goal: Associate every GPU API with its CPU calling context

Context-aware optimizations

Scope	XDMOV_IMPORTANC
<cuda copy=""></cuda>	13.2
₹ 72: mfem::rmemcpy::rDtoD(void*, void const*, unsigned long, bool)	6.8
◀ 34: [I] mfem::CudaVector::SetSize(unsigned long, void const*)	6.8
★■ 109: mfem::CudaVector::operator=(mfem::CudaVector const&)	6.8
49: mfem::CudaProlongationOperator::MultTranspose(mfem::CudaVector const&, mfen	2.2
← 86: mfem::CudaRAPOperator::Mult(mfem::CudaVector const&, mfem::CudaVector&)	2.1
Case 1	0.0
29: mfem::CudaProlongationOperator::Mult(mfem::CudaVector const&, mfem::CudaVector const&, mf	2.2
← 84: mfem::CudaRAPOperator::Mult(mfem::CudaVector const&, mfem::CudaVector&)	2.1
256: mfem::hydrodynamics::LagrangianHydroOperator::Mult(mfem::CudaVector con	0.0
Case 2 4 130: mfem::hydrodynamics::CudaMassOperator::Mult(mfem::CudaVector const&, mfem	2.1
212: mfem::hydrodynamics::LagrangianHydroOperator::Mult(mfem::CudaVector const&	0.1
39: mfem::CudaCGSolver::h_Mult(mfem::CudaVector const&, mfem::CudaVector&) const	0.1
€8 436: main	0.0
e 3 @ 61: cuVectorDot(unsigned long, double const*, double const*)	6.1

Performance insight: Pin host memory page

 A small amount of memory is transferred from device to host each time, repeated 197000 times

Scope	▼ GXCOPY (s):Sum (I)	GXCOPY:COUNT:Sum (I)	GXCOPY:D2H (B):Sum (I)
▼ 個 61: cuVectorDot(unsigned long, double const*, double const*)	3.67e-01 46.3%	1.97e+05 37.9%	7.81e+06 20.4%

- Avoid the cost of the transfer between pageable and pinned host arrays by directly allocating our host arrays in pinned memory
 - Use pinned memory when data movement frequency is high but size is small

Case 2: Trace Applications at Large-scale

• Nyx

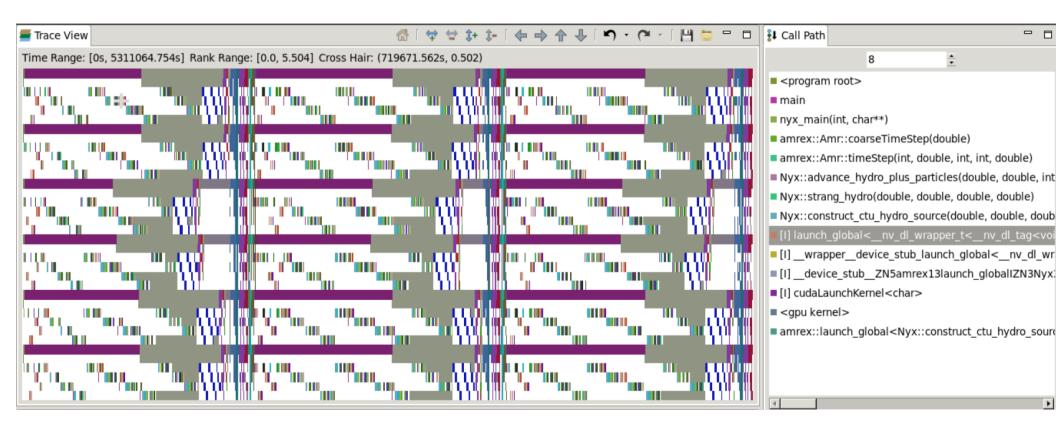
- 6 MPI processes
- 16 GPU stream per process

• DCA++

- 60 MPI processes
- 128 GPU stream per process

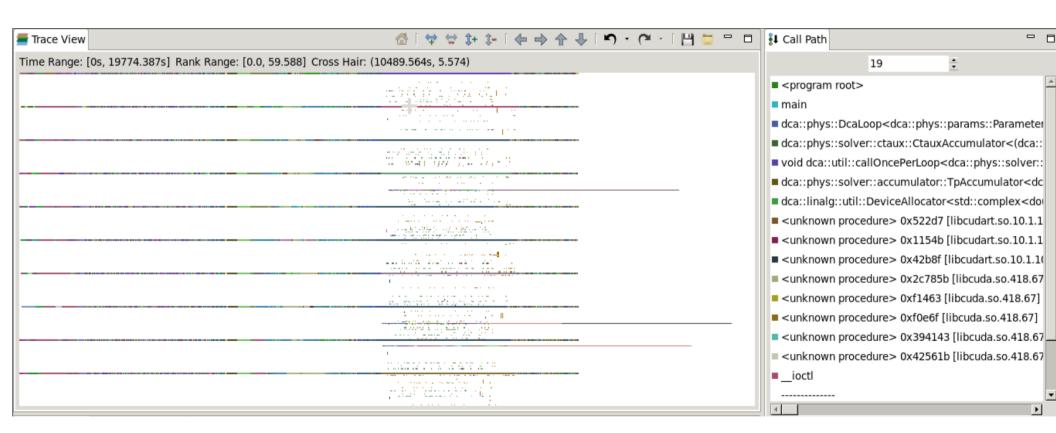
nvprof: Non-scalable Tracing of DCA++

nvprof

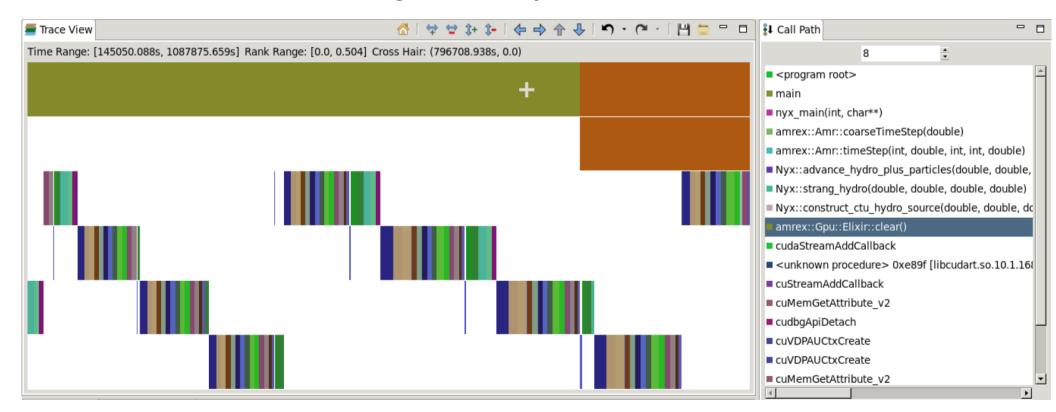

- With CPU profiling enabled, hangs on Summit
- Without CPU profiling
 - Collects 1.1 GB data

Hpctoolkit

- CPU+GPU hybrid profiling with full calling context
 - Collects 0.13 GB data
 - Data can be further reduced by sampling GPU events



Nyx trace view


DCA++ trace view

Nyx insufficient GPU stream parallelism

On GPU, streams are not working concurrently

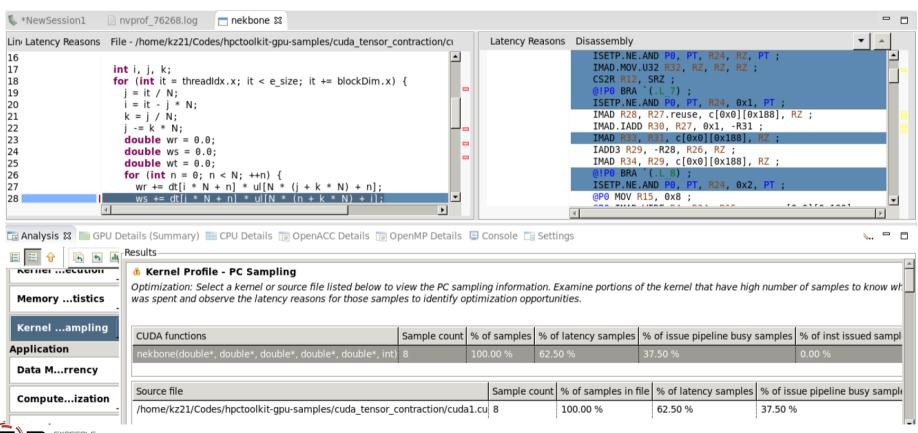
Nyx cudaCallBack issue

• On CPU, amrex::Gpu::Exlixir::clear() invokes stream callbacks

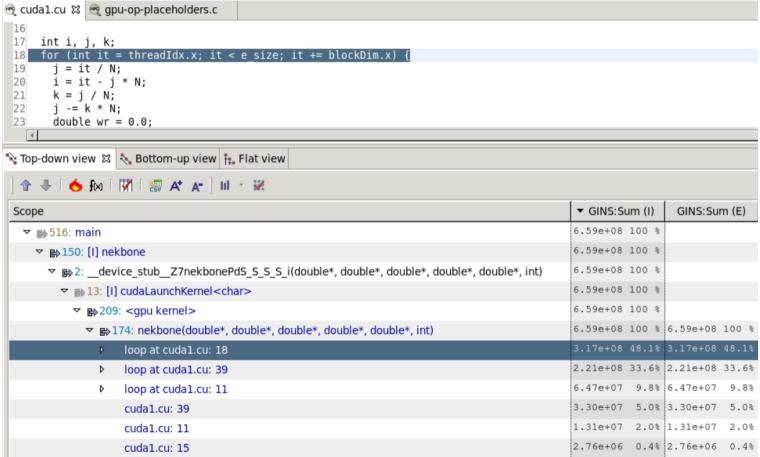
```
33 void
34 Elixir::clear () noexcept
35 {
36 #ifdef AMREX USE GPU
       if (Gpu::inLaunchRegion())
38
39
           if (m p != nullptr) {
               void** p = static cast<void**>(std::malloc(2*sizeof(void*)));
40
               p[\Theta] = m p;
41
               p[1] = (void*)m arena;
42
43
               AMREX HIP OR CUDA(
44
                   AMREX HIP SAFE CALL ( hipStreamAddCallback(Gpu::gpuStream(),
                                                                amrex elixir delete, p, 0));,
45
                   AMREX CUDA SAFE CALL(cudaStreamAddCallback(Gpu::gpuStream(),
46
47
                                                                amrex elixir delete, p, 0)););
48
               Gpu::callbackAdded();
49
50
51
       else
52 #endif
```


Nyx performance insight

- A bug present in the current version of CUDA (10.1). If a callBack is called in a place where multiple streams are used, the device kernels artificially synchronize and have no overlap.
- Fixed in CUDA-10.2?
- Workaround
 - The Elixir object holds a copy of the data pointer to prevent it from being destroyed before the related device kernels are completed
 - Allocate new objects outside the compute loop and delete them after the completion of the work


Case 3: Fine-grained GPU Kernel Tuning

 Nekbone: A lightweight subset of Nek5000 that mimics the essential computational complexity of Nek5000



nvprof: Limited source level performance metrics

No loop structure, No GPU calling context, No instruction mix

Nekbone Profile View

Performance insight 1: Execution dependency

The hotspot statement is waiting for j and k

```
⊕ cuda1.cu 

⋈

      syncthreads();
 16
17 int i, j, k;
 18 for (int it = threadIdx.x; it < e size; it += blockDim.x) {</pre>
       i = it / N:
      i = it - i * N:
       k = i / N;
       i -= k * N:
       double wr = 0.0:
       double ws = 0.0;
       double wt = 0.0;
       for (int n = 0: n < N: ++n) {
         wr += dt[i * N + n] * ul[N * (j + k * N) + n];
         ws += dt[j * N + n] * ul[N * (n + k * N) + i];
29
         wt += dt[k * N + n] * ul[N * (i + n * N) + i]:
30
🦎 Top-down view 🛭 📐 Bottom-up view 🚼 Flat view
 ↑ ♣ [ 🌖 [w [ [ ] A+ A+ ] | iii - iii
                                                                                                                                      GINS:STL ANY:St GINS:STL ANY:St GI
 Scope
                                                                                                        ▼ GINS:Sum (I)
                                                                                                                        GINS:Sum (E)
                                                                                                        6.59e+08 100 %
                                                                                                                                      3.70e+08 100 %

¬ ⇒ 174: nekbone(double*, double*, double*, double*, double*, int)

                                                                                                        6.59e+08 100 % 6.59e+08 100 % 3.70e+08 100 % 3.70e+08 100 % 3.0
                                                                                                        3.17e+08 48.1% 3.17e+08 48.1% 1.79e+08 48.3% 1.79e+08 48.3% 6.1

▼ loop at cuda1.cu: 18

                                                                                                                       8.80e+07 13.4% 4.92e+07 13.3%
                                                                                                        7.72e+07 11.7% 7.72e+07 11.7% 5.36e+07 14.5% 5.36e+07 14.5%
                     cuda1.cu: 32
                                                                                                       5.95e+07 9.0% 5.95e+07 9.0% 3.25e+07 8.8% 3.25e+07 8.8%
                     cuda1.cu: 28
                                                                                                        5 10pin7 7 00 5 10pin7 7 00 2 05pin7 8 00 2 05pin7 8 00
```


Strength reduction

- MISC.CONVERT: I2F, F2I, MUFU instructions
 - NVIDIA GPUs convert integer to float for division
 - High latency and low throughput instruction
- Replace j = it / N by $j = it \times (1/N)$ and precompute 1/N

```
for (int it = threadIdx.x; it < e size; it += blockDim.x) {
       i = it - i * N:
       double wr = 0.0:
       double ws = 0.0:
       double wt = 0.0:
       for (int n = 0; n < N; ++n) {
         wr += dt[i * N + n] * ul[N * (j + k * N) + n];
🍾 Top-down view 🕱 🐛 Bottom-up view 🛼 Flat view
 Scope
                                                         MISC.CONVERT:Sum (I)
                                                                                       MISC.CONVERT:Sum (E)
                                                                2.01e+05 100 %
                                                                                               2.01e+05 100 %
              ▼ В 174: nekbone(double*, double*, d
                                                                1.02e+05 51.0%
                                                                                               1.02e+05 51.0%
                 ▼ loop at cuda1.cu: 18
                     cuda1.cu: 27
                     cuda1.cu: 32
                     cuda1.cu: 28
                     cuda1.cu: 29
                     cuda1.cu: 19
```


Coming Attraction: Instruction-level Analysis

Separate GPU instructions into classes

Memory operations

- instruction (load, store)
- size
- memory kind (global memory, texture memory, constant memory)

- Floating point

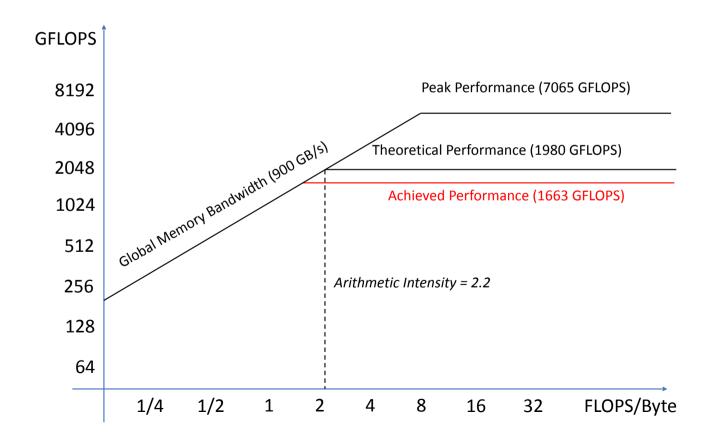
- instruction (add, mul, mad)
- size
- compute unit (tensor unit, floating point unit)
- Integer operations
- Control operations
 - branches, calls

Performance insight 2: Instruction Throughput

Estimate instruction throughput based on pc samples

$$.THROUGHPUT = \frac{INS}{TIME}$$

• $GFLOPS = THROUGHPUT_{DP}$


$$\textbf{.} Arithmetic\ Intensity = \frac{THROUGHPUT_{GMEM}}{THROUGHPUT_{DP}}$$

	Scope	▼ MEMORY.LOAD.GLOBAL.64	MEMORY.STORE.GLOBAL.64	FLOAT.MAD.64:Sum	FLOAT.MUL.64:Sum	FLOAT.ADD.64:Sum
	▼ <program root=""></program>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	▼ 516 : main	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	▼ [I] inlined from cuda4.cu: 2	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	▼ В 2:device_stubZ7nekboneF	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
EXASO COMPL PROJE	[I] inlined from cuda_runtime.l	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	▼ 🖶 209: <gpu kernel=""></gpu>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	▼ В 174: nekbone(double*,	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %

Roofline analysis

• 83.9% of peak performance

Performance insight 3: unfused DMUL and DADD

• **DMUL**: 6.51×10^5

• DADD: 4.55×10^5

If all paired DMUL and DADD instructions are fused to MAD instructions

$$\frac{\left(4.55 \times 10^5 + 3.08 \times 10^6\right)}{3.08 \times 10^6} = 14.7\%$$

1663 GFLOPS × 114.7% = 1908 GFLOPS (99% of peak)

Scope	▼ MEMORY.LOAD.GLOBAL.64	MEMORY.STORE.GLOBAL.64	FLOAT.MAD.64:Sum	FLOAT.MUL.64:Sum	FLOAT.ADD.64:Sum
▼ <pre> <pr< th=""><th>3.36e+05 100 %</th><th>5.32e+04 100 %</th><th>3.08e+06 100 %</th><th>6.51e+05 100 %</th><th>4.55e+05 100 %</th></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ 🖶 516: main	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ [I] inlined from cuda4.cu: 2	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ 🖶 2:device_stubZ7nekboneF	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
[I] inlined from cuda_runtime.	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ 🖺 209: <gpu kernel=""></gpu>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ В 174: nekbone(double*,	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %

Case Study Acknowledgements

• ORNL

Ronnie Chatterjee

• IBM

- Eric Liu

NERSC

- Christopher Daley
- Jean Sexton
- Kevin Gott

Installing HPCToolkit for Analysis of GPU-accelerated Codes

- Full instructions: http://hpctoolkit.org/software-instructions.html
- The short form
 - Clone spack
 - command: git clone https://github.com/spack/spack
 - Configure a packages.yaml file
 - specify your platform's installation of CUDA or ROCM
 - specify your platform's installation of MPI
 - use an appropriate GCC compiler
 - ensure that a GCC version >= 5 is on your path. typically, we use GCC 7.3
 - spack compiler find
 - Install software for your platform using spack
 - NVIDIA GPUs: spack install hpctoolkit@master +cuda +mpi
 - AMD GPUs: spack install hpctoolkit@master +rocm +mpi

